一、自然语言处理是什么?
自然语言处理说白了,就是让机器去帮助我们完成一些语言层面的事情,典型的比如:情感分析、文本摘要、自动问答等等。我们日常场景中比较常见到的类似Siri、微软小冰之类的,这些的基础都是自然语言处理,另外还有一些语音处理,这就暂且不表了。总之,你看到的机器与人利用语言交互,用机器模拟人脑阅读,对话,评论等等这些的基础都是自然语言处理的范畴之内。
二、自然语言处理怎么学?
自然语言处理的实际入门步骤来说,假如单单从应用来说,我觉得还是直接先从简单的应用搞起更好一点,上来就是理论的话可能对一些人还是比较枯燥,我认为一个好的过程是:实践-理论-实践,先由实践搞起,加深兴趣,然后理论研究,深化理解,后继续实践,知行合一。闲言少叙,下面说下自己的入门步骤:
1、分词
2、关键词提取
3、词向量
4、文本分类
5、自动问答
三、自然语言处理的深入
谈到自然语言处理的深入,这个可以做的就比较多了,上面列举的各个方面都与比较大的优化空间。但总体而言,的几个问题在于分词、词向量的转化以及文本特征的提取,这也是一定程序上困扰我们继续提高的几大阻碍。拿分词来说,无论是基于词典和算法的分词还是目前基于深度学习的分词方式,都只能说一定程度上进行分词实现,想要达到人脑的分词效果,实际上还是前路漫漫;词向量的转化在一定程序上也依赖于大量的语料,而我们也不可能在训练模型时囊括所有的词语,所有的语境,所有的文本,这些也都是不现实的,只能说时优化算法或者选择一种更好的方式;文本特征的提取也是一个我们在后期进行学习过程中一个绕不过去的坎。总而言之,自然语言处理说简单也简单,说难也难,就看你想要达到什么样的高度。