多个程序随机执行。反应快,灵敏度高。利用高性能工业控制计算机作为用户终端,操作界面及控制程序安装在工业控制计算机内,操纵变频器来控制相应负载动作。系统的高适应性,高可靠性,性能超群,能承受震动,撞击,灰尘和大的温差变化。利用数据模块化结构,简化了系统的维护,便于系统升级。
喷泉的原理是个动量守恒,从大半径管道到小半径管道,产生一个速度的变化,冲向背离地面的方向。 大半径的速度由泵带动,小半径中的速度是原来速度,与动量转化速度。需要选择一个微元计算动量守恒,这样能求出一个速度,这个速度是出口速度,然后就是一个上抛运动了,这个是理想的情况,没有摩擦,没有风。
利用音乐文件的物理波形,将其分为若干乐段,精度达十毫秒,并且自动识别震撼、思念、抒情、喜悦、激昂、悲哀、欢快、热烈等乐曲的基本情感特征,转换为控制信号,经过同步处理后通过信号输出卡输出到外围具体控制单元,即根据水型组态规则控制潜水泵、电磁阀、水下彩灯和变频器等执行机构,将视觉感受与听觉感受融为一体。
当人们感受各种音响时,会不自觉的把这些听觉感受和其它非听觉器官的感受联系起来,这种现象称为联觉,属于一种异质异构多一同态对应现象。一般情况下,高音区的音符经常和明亮的视觉感受、积极或快乐的情态感受等联系在一起,低音区的音符经常和昏暗的视觉感受、消沉或哀伤的情态感受等联系在一起;舒缓的节奏容易让人感受到开阔的空间或较为平静的情绪,而急促的节奏则容易让人感到空间狭窄、情绪躁动等等。喷泉曲目的编配就是根据联觉现象来组态各种水型,好比编导一场舞蹈一样,为使演出成功,导演需要考虑舞蹈演员以何种体态动作来表现音乐的情感魅力。
1930年,德国发明家奥图皮士特先生首先带出喷泉的概念,起初他只在百货商店和餐馆建造小型喷泉,及后经过多年的发展,其音乐喷泉的设计及构造已变得更大型及复杂。根德皮斯特域先生早于十二岁已跟随父亲设计及建造喷泉,1952年的夏天,西柏林的工业展览中,一个美国人看到音乐喷泉的表演,并把它带回纽约电台音乐会堂。1953年1月15日音乐喷泉在美国首次表演,表演期间超过一百五十万人观看。现在根德皮斯特域先生继续改善其音乐喷泉及推向全世界,多年的改良已大大减低建造和维修的成本,电脑更已用在音乐喷泉上,使其表演能更复杂和美丽。